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ABSTRACT 

Segmenting Metastatic Brain Tumor 
Using Deep Learning 

by 

Ankush Pratap Singh 

Advisor:  Prof. Yao Wang, Ph.D. 

Submitted in Partial Fulfillment of the Requirements for 

the Degree of Master of Science (Computer Engineering) 

May 2023 

The detection of brain metastases in patients with metastatic cancer is crucial for 

treatment planning and prognosis during radiation therapy. As the disease progresses, brain 

metastases frequently develop, emphasizing the need for early and accurate detection. This 

work presents a comprehensive analysis of the NYUMets dataset, which focuses on the 

dynamics of cancer, specifically metastatic cancer progression over time. 

In this study, we evaluated the performance of segmentation-through-time architectures in 

comparison to a baseline UNet architecture. Our analysis utilized modified architectures with 

LSTM or transformer encodings (both spatial and temporal), which demonstrated a superior 

capacity for capturing segmentation as compared to the regular UNet architecture. 

The results of our study indicate a notable improvement in segmentation accuracy, with a 

25% increase in the Dice Score. These findings suggest the potential utility of our modified 

architectures for improved segmentation in brain metastases detection, ultimately 

contributing to more effective treatment planning and better patient outcomes. 
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1. Introduction

1.1 Background 

Metastatic cancer is a term used to describe cancer that has spread from its original 

location to other parts of the body. It is also commonly referred to as stage IV cancer and 

is considered to be a more advanced stage of cancer. Metastasis is the process by which 

cancer cells break away from the primary tumor and travel through the blood or 

lymphatic system to other parts of the body, where they can form new tumors. 

When cancer cells metastasize to a new location, they retain many of the same features as 

the primary tumor, which can help doctors identify the type of cancer and the best course 

of treatment. This is done by examining the cells under a microscope and conducting 

other tests to determine their characteristics. 

One of the common locations where cancer can metastasize is the brain. While any type 

of cancer can spread to the brain, some types are more likely to do so, including lung, 

breast, colon, kidney, and melanoma. When cancer cells metastasize to the brain, they 

can form one or more tumors that can cause a range of symptoms, including headache, 

memory loss, personality changes, seizures, and more. 

Treatment for metastatic brain tumors may involve a combination of surgery, radiation 

therapy, chemotherapy, immunotherapy, and other treatments. However, the primary 
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focus of treatment is often on managing symptoms and reducing pain and discomfort for 

the patient. 

 

It is estimated that approximately one-third of patients with another type of cancer will 

develop one or more metastatic brain tumors. The risk of developing brain metastases 

typically increases with age, with those over the age of 65 being at the highest risk. It is 

important for cancer patients and their doctors to be aware of the potential for metastasis 

and to monitor for any signs or symptoms that may indicate its occurrence. 

 

Figure 1.1: Brain metastases (Source: https://www.mayoclinic.org/diseases-conditions/brain- 
metastases/symptoms-causes/syc-20350136) 

 

1.2 Detecting Brain Metastases using Deep Learning  
 
 
Deep learning-based algorithms have been gaining attention in the medical field for their 

potential to improve diagnostic accuracy and treatment outcomes. One area where these 

algorithms have shown promise is in the automatic detection and segmentation of brain 

metastases (BMs) in magnetic resonance imaging (MRI) scans. While traditional 

methods of segmenting BMs rely on manual input from radiologists, deep learning-based 

algorithms offer the ability to automate this process, potentially reducing human error 

and increasing efficiency. 
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Studies have shown that these algorithms can achieve high levels of accuracy in detecting 

and segmenting BMs. In fact, in some cases, the performance of the algorithm has been 

shown to be comparable to or even better than that of human experts. Parameters such as 

the Dice score, which measures the spatial overlap between two segmentation sets of the 

same region of interest, have been used to quantify the performance of these algorithms 

compared to expert segmentation.  

 

  Figure 1.2: Examples of deep learning-based segmentation of brain tumors in the local dataset: (a) 
    meningioma, (b) metastasis, and (c) vestibular schwannoma 
 
 

1.3 Related Works 
 
 
Medical image segmentation plays a crucial role in the diagnosis and treatment of brain 

tumors. With the advent of advanced imaging techniques, such as multiparametric 

magnetic resonance imaging (mpMRI), the need for accurate and reliable automated 

image segmentation has become increasingly important. The BraTS challenge has been a 

major milestone in advancing the field of brain tumor segmentation, providing a 

standardized dataset for researchers and clinicians to evaluate and compare different 

algorithms for glioma segmentation. 
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The dataset used in the BraTS challenge includes a variety of sequences, such as T1-pre 

and post-gadolinium contrast (T1C), T2-weighted, and T2-FLAIR sequences, which are 

commonly used in clinical practice. The use of such standardized datasets has allowed 

researchers to develop and test a range of advanced deep learning algorithms that can 

automatically detect and segment brain tumors with high accuracy. These algorithms 

have the potential to significantly improve patient outcomes by enabling earlier detection 

and more precise treatment planning. 

 

In addition to BraTS, the BrainMetShare dataset has also been extensively studied for the 

segmentation of brain metastases. BrainMetShare includes 156 whole brain MRIs, each 

with high-resolution, multi-modal pre- and post-contrast sequences obtained from 

patients with at least one brain metastasis. These images are segmented by radiologists 

using ground truth, which provides a benchmark for evaluating the performance of 

automated segmentation algorithms. 

 

The development of these datasets and algorithms is an exciting area of research with the 

potential to revolutionize the diagnosis and treatment of brain tumors. By improving the 

accuracy and speed of image segmentation, clinicians can make more informed treatment 

decisions, leading to better outcomes for patients.  
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1.4 Training and Evaluation Methodology 

 
UNet[1] architecture was chosen as a baseline for training due to its straightforward yet 

effective design. UNet consists of an encoder-decoder network with skip connections, 

which preserve spatial information and minimize resolution loss during down-sampling 

and up-sampling. This architecture was originally designed for biomedical image 

segmentation, and thus considers the unique characteristics of medical images, such as 

low contrast, noise, and anatomical structure variability. 

 

Moreover, UNet is computationally efficient and has demonstrated impressive 

performance on a variety of medical image segmentation tasks, including those involving 

the brain, liver, lungs, and other organs. Overall, UNet's simplicity, effectiveness, and 

adaptability to medical image segmentation make it a strong candidate for our training 

approach, all other architectures were modifications of UNet architecture. 

 

In all the experimental architectures that were utilized, encompassing UNet and its 

various adaptations, the filter size employed for the convolutional layers was set to 

3x3x3. Furthermore, the number of input channels was set to 1, indicating a single-

channel input, while the number of output channels was set to 2, representing a two-

channel output. These configuration choices were made consistently across the different 

architectural variations explored during the experiments.  

 

In the context of medical image segmentation, evaluating the performance of an 

algorithm is crucial for its clinical applicability. Therefore, a variety of metrics are 
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employed to assess the quality of the segmentation results obtained from different 

networks. One of the most used metrics is the Dice score, which provides a quantitative 

measure of the agreement between a predicted segmentation and its corresponding 

ground truth. 

 

The Dice coefficient ranges from 0 to 1, with 1 indicating a perfect overlap between the 

predicted segmentation and the ground truth. It is computed as 2 times the area of overlap 

between the predicted and ground truth masks divided by the total number of pixels in 

both images. The Dice score is particularly useful in evaluating the segmentation of 

structures with irregular shapes and sizes, such as tumors. 

 

In addition to the Dice score, other metrics such as Tumor Volume, Tumor Count, and 

Small Tumor Count are also evaluated. Tumor Volume refers to the volume of the tumor 

segmented by the algorithm, while Tumor Count and Small Tumor Count provide 

information on the number of tumors detected and the number of small tumors detected, 

respectively with respect to ground truth. These metrics typically do not provide a 

comprehensive understanding of the comparative superiority of one algorithm over 

another. 

1.5 Outline 
 
The thesis is structured into several chapters to provide a comprehensive analysis of the 

proposed models. Chapter 2 presents the NYUMets dataset, which is used for all analysis 

in this thesis. In chapter 3, the UNet architecture is described in detail, including its 

training and validation results. Chapters 4, 5, 6 introduce three different models that 
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incorporate temporal dependencies of MRI scans. Chapter 7 compares the performances 

of all proposed architectures on various metrics on validation and test data. Chapter 8 

investigates whether adding recurrence at multiple layers improves or decreases the 

performance through multi-layer recurrence. Finally, in chapter 9, the findings of this 

thesis are summarized, and future research directions are discussed. 
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2. NYUMets Dataset 

2.1 Background 

 
NYUMets[5] is a remarkable dataset that is assembled from one of the largest clinical 

registries of patients with metastatic brain cancer in the world. This dataset is now 

publicly available and will be a valuable resource for researchers and clinicians who are 

interested in understanding the complex dynamics of metastatic cancer. One of the most 

intriguing aspects of this dataset is that it provides an opportunity for scientists and 

healthcare professionals to focus on the changes in metastatic cancer over time, as the 

disease progresses, which can give insights into the mechanisms that drive the 

progression of this complex and challenging condition. 

 

The dataset includes information on 1,429 patients who were analyzed over an average 

period of 17 months, with an average of six imaging studies per patient. In total, the 

dataset includes 8,003 MRI studies, which encompass a wide range of sequences 

including segmentation by experts, T1 pre-contrast, T1 post-contrast, high-resolution T1 

post-contrast, T2, and FLAIR. The dataset also includes 4,860 clinical follow-up 

timepoints and 81,562 medication updates. 

 

One of the most notable features of the NYUMets dataset is the extensive imaging data 

that has been collected. The dataset includes high-resolution MRI studies that are 

segmented by experts and ML algorithms, which means that the data is highly accurate 

and provides detailed information on the location and extent of the metastatic tumors. 
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This information will be invaluable for researchers who are interested in developing new 

techniques for image segmentation and analysis. 

Figure 2.1: NYUMets dataset overview 

 

The dataset has been compiled with a strong focus on patient privacy and confidentiality. 

There is no disclosure of any patient information at any point in the process, and 

anonymity is ensured for every patient. This commitment to patient privacy and 

confidentiality is crucial, as it enables researchers to access the data they need while 

protecting the rights and interests of the patients who have contributed to the dataset. 

Overall, the NYUMets dataset represents a major step forward in our understanding of 

metastatic brain cancer. The extensive imaging data and clinical information included in 

the dataset will provide researchers and clinicians with a wealth of information that can 

be used to develop new treatment strategies, improve patient outcomes, and ultimately 

find a cure for this devastating disease. 
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2.2 Gamma Knife Surgery 

 
Gamma Knife radiosurgery is a non-invasive and highly precise form of radiation therapy 

that delivers targeted high-dose radiation to a specific area of the brain. The Gamma 

Knife machine uses a large number of small radiation beams that intersect at a specific 

point in the brain, allowing for a concentrated and powerful dose of radiation to be 

delivered to a specific target while minimizing radiation exposure to the surrounding 

healthy tissue. This makes it an ideal treatment option for complex and difficult-to-reach 

brain tumors, vascular malformations, and other brain disorders that may not be suitable 

for traditional surgery or whole-brain radiation therapy. 

Gamma Knife radiosurgery offers many benefits over traditional surgery and whole-brain 

radiation therapy. Since there is no incision, patients typically experience less pain, 

scarring, and recovery time. The precise targeting of the radiation also minimizes damage 

to healthy brain tissue, reducing the risk of side effects such as cognitive impairment and 

neurological deficits. In addition, Gamma Knife treatment can be repeated if necessary, 

allowing for greater flexibility in managing complex and recurrent brain disorders. 

 
Figure 2.2: Gamma Knife Surgery 
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2.3 Data Gathering 

 
In the context of medical treatment for brain disorders, a patient may undergo a series of 

MRI scans and gamma knife surgeries over a period of time, denoted as t=0, t=1, t=2, and 

so on until t=n. At each time point, the patient goes in for an MRI scan to monitor the 

progression of the disease and to guide the treatment plan. Following the MRI scan, the 

patient may receive gamma knife surgery as an alternative to traditional brain surgery or 

whole-brain radiation therapy, depending on the nature of the brain disorder being 

treated. 

This process may repeat over several time points as the patient continues to receive 

medical treatment for their condition. The series of MRI scans and gamma knife surgeries 

can provide valuable information about the disease progression and the effectiveness of 

the treatment plan, allowing medical professionals to adjust the treatment approach as 

necessary to optimize outcomes for the patient. 

 
 
 

 
 
 

Figure 2.3: Data Gathering 
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Figure 2.4: Sample Images and Labels 
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3. UNet Architecture 

3.1 Architecture Background 

 
UNet is a deep convolutional neural network (CNN) architecture for image segmentation, 

particularly in medical image analysis. It was proposed in 2015 by Olaf Ronneberger, 

Philipp Fischer, and Thomas Brox. 

 

UNet consists of an encoder and a decoder. The encoder is a series of convolutional and 

pooling layers that downsample the input image to extract features. The decoder then 

upsamples the output of the encoder to produce a segmentation map with the same size as 

the input image. The upsampling is performed using transposed convolutional layers that 

gradually increase the spatial resolution of the feature maps. 

 

The UNet architecture also includes skip connections between the encoder and decoder, 

which allow the decoder to use information from earlier stages of the encoder to improve 

the segmentation results. The skip connections concatenate the feature maps from the 

encoder with the feature maps from the corresponding decoder layers, allowing the 

decoder to use both high-level and low-level features. 

 

UNet has achieved state-of-the-art results on various medical image segmentation tasks, 

including brain tumor segmentation, cell segmentation, and retinal vessel segmentation. 
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Figure 3.1: UNet Architecture (for 3d Scans) 

 
 

3.2 Results  

 
 
After the UNet architecture was trained for 3D MRI scans, a thorough analysis was 

conducted to evaluate the performance of the model with varying learning rates. The 

obtained results were carefully examined and compared to identify the best possible 

learning rate for the UNet architecture. This process involved analyzing the Validation 

Dice Score of the model.  

 

Throughout the evaluation, it was found that the performance of the UNet architecture 

varied significantly depending on the learning rate used during training. Specifically, 

certain learning rates resulted in higher dice score than others.  
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By analyzing and comparing the results obtained from each learning rate, I was able to 

identify the most appropriate learning rate for the UNet architecture in the context of 3D 

MRI scans from NYUMets dataset 

Best Validation Dice Score 

Learning Rate 

Combination 1e-3 1e-4 1e-5 

(16, 32, 64) 0.3340 0.3401 0.2016 

(16, 32, 64, 128) 0.3326 0.2996 0.1987 

(64, 128, 256) 0.3610 0.3761 0.3170 

(64, 128, 256, 512) 0.3487 0.3553 0.2165 

 

Table 3.1: UNet Architecture Results (for 3d Scans) 
 
 

Upon analyzing the results obtained after training the UNet architecture for 3D MRI 

scans using different learning rates, it can be observed that for our particular set up the 

learning rate of 1e-4 tends to consistently outperform the other two learning rates for all 

the combinations tested. This observation is significant as it suggests that the choice of 

learning rate plays a crucial role in the performance of the UNet architecture for 3D MRI 

scans. 

 

The finding highlights the importance of hyperparameter tuning, particularly the learning 

rate, for achieving optimal performance in deep learning models. It is also important to 

note that while a particular learning rate may perform well for a specific dataset and 

setup, it may not generalize well to other datasets. Therefore, it is essential to tune 

hyperparameters for each new dataset or problem. 
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Figure 3.2: UNet Architecture Performance across Learning Rates              Figure 3.3: UNet Validation Loss at LR 1e-4 

 

Based on the experimentation results for our particular set up, it has been seen that the 

most effective configuration for the UNet model involves the use of a 3-layered network 

consisting of 64, 128, and 256 features, with a learning rate of 1e-4. It has been found 

that when using 4-layered networks, overfitting tends to occur, which leads to a reduction 

in performance. Therefore, the 3-layered network is the optimal configuration for our 

experimentation setup. 

 

In addition to this, the validation loss curve has been analyzed to further evaluate the 

performance of different UNet combinations. It has been observed that the combination 

of 64, 128, and 256 features has the least validation loss, which indicates that it is the 

most effective configuration for the UNet model based on Dice Score for our 

experimentation setup. 
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Figure 3.4: UNet Architecture Performance on Validation Dice Score 

In conclusion, based on both experimentation and analysis of the validation loss curve, it 

can be observed that the most optimal UNet configuration involves the use of a 3-layered 

network consisting of 64, 128, and 256 features, with a learning rate of 1e-4 for our 

experimentation setup (in terms of training, validation data set, and choice of the number 

of channels per layer and filter size). This configuration provides the best performance 

and minimizes the risk of overfitting, leading to a more accurate and reliable model. 

 

 

Figure 3.5: UNet Architecture Performance Visualization 
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4. LSTM Based Segmentation Through Time 
(Stt) - UNet Architecture 

4.1 Architecture Background 

 
The UNet architecture has been a popular choice for segmentation tasks in medical 

imaging due to its ability to accurately segment objects of interest. However, the UNet 

architecture has limitations when it comes to handling temporal dependencies in a 

sequence of images. This is because the architecture does not take into account the 

sequentiality of the input images, which can result in suboptimal performance in 

segmentation tasks where temporal dependencies are important. 

 

To address this limitation, a recurrent network can be incorporated into the architecture to 

capture temporal dependencies. One such architecture that has been proposed is an 

LSTM-based stt - UNet architecture. In this architecture, an LSTM is added to the 

bottleneck layer to capture the temporal dependencies of the input image sequence. By 

doing so, the LSTM-based stt - UNet architecture is better able to understand the 

sequentiality of the input images, leading to improved performance in segmentation tasks 

that require consideration of temporal dependencies. 

 

The addition of an LSTM layer in the bottleneck of the UNet architecture allows the 

model to learn how to track the progression of objects or regions of interest in a sequence 

of images, which can be particularly useful in applications such as medical imaging 

where time-series data is common. By incorporating a recurrent network, the model can 
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effectively capture the temporal dependencies between consecutive images, allowing for 

more accurate segmentation of objects or regions of interest. 

 

Figure 4.1: LSTM Based Stt - UNet Architecture 

 

The use of an LSTM-based stt - UNet architecture is a promising approach for 

segmentation tasks that require consideration of temporal dependencies. The 

incorporation of a recurrent network allows the architecture to capture the sequentiality of 

input images, resulting in improved performance and accuracy in segmentation tasks. As 

such, this architecture may be particularly useful in medical imaging applications where 

time-series data is common. 

 

Figure 4.2: Detailed Description of LSTM Based Stt - UNet Architecture 
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4.2 Results  
 
After conducting a range of trials to evaluate the performance of the LSTM-based stt-

UNet architecture, the optimal combination for achieving the best segmentation results is 

64, 128, 256, and 512 features for our experimentational setup. This combination was 

found to be the best performing among all the configurations tested, in terms of 

validation Dice Score for our setup. 

 

Best Validation Dice Score 

Learning Rate 

Combination 1e-3 1e-4 1e-5 

(16, 32, 64, 128) 0.3206 0.4053 0.3321 

(32, 64, 128, 256) 0.3013 0.4296 0.3563 

(64, 128, 256, 512) 0.2722 0.4363 0.3470 

(128, 256, 512, 1024) 0.2964 0.4284 0.3918 

 

Table 4.1: LSTM based stt - UNet Architecture Results (for 3d Scans) 
 
 

Furthermore, the validation loss curve of the LSTM-based stt-UNet architecture clearly 

showed that the combination of 64, 128, 256 and 512 features had the least validation 

loss for our setup. This is a strong indication that the architecture has the ability to 

capture temporal dependencies in the data and produce accurate segmentations. 
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 Figure 4.3: LSTM based UNet Architecture Performance        Figure 4.4: Validation Loss at LR 1e-4 

 

It is worth noting that using a learning rate of 1e-4 was optimal for achieving the best 

segmentation results for our experimentational setup. This learning rate allowed the 

model to converge quickly and produce accurate segmentations, without overfitting the 

data. Overall, these findings suggest that the LSTM-based stt-UNet architecture with the 

64, 128, 256 and 512 features configuration and a learning rate of 1e-4 is an effective 

approach for performing segmentation tasks that require consideration of temporal 

dependencies in our setup. 

 

Figure 4.5: LSTM Based stt - UNet Architecture Performance on Validation Dice Score 
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In conclusion, based on both experimentation and analysis of the validation loss curve, it 

can be observed that the most optimal LSTM based stt - UNet configuration involves a 

network consisting of 64, 128, 256 and 512 features, with a learning rate of 1e-4 for our 

experimentation setup (in terms of training, validation data set, and choice of the number 

of channels per layer and filter size). This configuration provides the best performance 

and minimizes the risk of overfitting, leading to a more accurate and reliable model. 

 

 

Figure 4.6: LSTM based stt - UNet Architecture Performance Visualization 
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5. Enhancing UNet Architecture with a Spatial 
Transformer  

5.1 Architecture Background 

 
Another promising modification involves the use of transformer encodings in the 

bottleneck layer. 

 

Transformers are a type of neural network architecture that have shown great promise in 

various natural language processing tasks and have recently been adapted for use in 

image processing tasks as well. In this implementation, the transformer used in the UNet 

architecture is a spatial transformer, which operates between each voxel of the image. 

 

The use of transformer encodings in the UNet architecture is intended to capture long-

range dependencies in the data, which may be difficult to capture using the standard 

convolutional layers in the UNet architecture. By incorporating transformer encodings 

into the bottleneck layer of the UNet architecture, it may be possible to achieve more 

accurate and robust segmentation results. 

Figure 5.1: Spatial Transformer incorporated UNet Architecture 
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In the spatial transformer, each voxel in the input volume at a time represents a token. 

Self-attention between tokens occurs in the bottleneck layer, where a Transformer 

Encoder is applied to capture spatial relationships and dependencies among the tokens. 

5.2 Results  
 
 
After conducting a range of trials to evaluate the performance of the Spatial Transformer-

incorporated UNet architecture, the optimal combination for achieving the best 

segmentation results is 32, 64, 128, and 256 features on our experimentation setup. This 

combination was found to be the best performing among all the configurations tested, in 

terms of validation Dice Score. 

 

Best Validation Dice Score 

Learning Rate 

Combination 1e-3 1e-4 1e-5 

(16, 32, 64, 128) 0.2727 0.4466 0.1955 

(32, 64, 128, 256) 0.2933 0.4718 0.2611 

(64, 128, 256, 512) 0.2568 0.4636 0.3869 

(128, 256, 512, 1024) 0.073 0.4553 0.2774 

 

Table 5.1: Spatial Transformer incorporated UNet Architecture Results (for 3d Scans) 
 
 

Furthermore, the validation loss curve demonstrated that this combination also had the 

least validation loss, indicating that the model was not overfitting the training data and 

was able to generalize well to new data on our setup. 
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 Figure 5.2: Spatial Transformer incorporated UNet Architecture Performance Figure 5.3: Validation Loss at LR 1e-4 

 

It is worth noting that using a learning rate of 1e-4 was optimal for achieving the best 

segmentation results on our experimentational setup. This learning rate allowed the 

model to converge quickly and produce accurate segmentations, without overfitting the 

data. Overall, these findings suggest that the Spatial Transformer incorporated UNet 

architecture with the 32, 64, 128, and 256 features configuration and a learning rate of 1e-

4 on our setup (in terms of your training, validation data set, and your choice of the 

number of channels per layer and filter size) is an effective approach for performing 

segmentation tasks as per our setup. 
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Figure 5.4: Spatial Transformer incorporated UNet Architecture Performance on Validation Dice Score 

 

This suggests that incorporating a spatial transformer into the UNet architecture can 

improve its ability to capture complex spatial relationships in the image, leading to better 

segmentation performance. 

 

 

Figure 5.5: Spatial Transformer incorporated UNet Architecture Performance Visualization 
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6. Temporal Transformer Based Segmentation 
Through Time (Stt) - UNet Architecture 

6.1 Architecture Background 

 
Introducing a temporal transformer is an alternative method to implement transformer 

encoding that takes into account the temporal aspect of the data. This method involves 

applying the transformer architecture to a sequence of data points over time. 

 

Compared to the traditional transformer architecture that processes inputs in a parallel 

manner, the temporal transformer encodes temporal dependencies between the input 

sequence, allowing it to capture dynamic changes in the data over time. 

 

 
Each token represents a voxel at a specific position and time step, including the input 

channel features associated with it. The attention mechanism considers both the current 

voxel's features within the current time step and attends to the features of other time 

steps, enabling the model to capture both temporal dependencies and contextual 

representations within each time step. 

 

The inclusion of temporal information has been shown to improve performance and 

accuracy compared to traditional encoding methods that do not consider temporal 

dependencies. 
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Figure 6.1: Temporal Transformer Based Stt - UNet Architecture 

6.2 Results  

 
 
After conducting a range of trials to evaluate the performance of the Temporal 

Transformer-based stt-UNet architecture, the optimal combination for achieving the best 

segmentation results is 64, 128, 256 and 512 features on our experimentational setup. 

This combination was found to be the best performing among all the configurations 

tested, in terms of validation Dice Score. 

Best Validation Dice Score 

Learning Rate 

Combination 1e-3 1e-4 1e-5 

(16, 32, 64, 128)  0.3235 0.4459 0.1641 

(32, 64, 128, 256) 0.1283 0.4705  0.3020 

(64, 128, 256, 512)  0.2589  0.4728  0.4422 

(128, 256, 512, 1024)  0.106  0.4542  0.2884 

Table 6.1: Temporal Transformer based stt - UNet Architecture Results (for 3d Scans) 
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Furthermore, the validation loss curve demonstrated that this combination also had the 

least validation loss, indicating that the model was not overfitting the training data and 

was able to generalize well to new data. 

  

 Figure 6.2: Temporal Transformer based UNet Architecture Performance  Figure 6.3: Validation Loss at LR 1e-4 

 

It is worth noting that using a learning rate of 1e-4 was optimal for achieving the best 

segmentation results on our setup. This learning rate allowed the model to converge 

quickly and produce accurate segmentations, without overfitting the data. Overall, these 

findings suggest that the Temporal Transformer-based stt-UNet architecture with the 64, 

128, 256 and 512 features configuration and a learning rate of 1e-4 on our setup (in terms 

of your training, validation data set, and your choice of the number of channels per layer 

and filter size) is an effective approach for performing segmentation tasks that require 

consideration of temporal dependencies. 
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Figure 6.4: Temporal Transformer Based stt - UNet Architecture Performance on Validation Dice Score 

 

This suggests that incorporating a temporal transformer into the UNet architecture can 

improve its ability to capture complex temporal relationships in the image, leading to 

better segmentation performance. 

 

Figure 6.5: Temporal Transformer Based stt - UNet Architecture Performance Visualization 
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7. Performance Comparisons 

7.1 Performance Comparisons on Validation and Test Dice 
Score 

 
In the study, the performance of four different architectures was compared for their 

effectiveness in temporal image segmentation: a temporal transformer-based stt-UNet 

architecture, a spatial transformer incorporated UNet architecture, an LSTM-based stt-

UNet architecture, and a regular UNet architecture on our experimentation setup. After 

training and testing these models, the validation and test dice scores were used as a metric 

to evaluate their performance. 

Combination Validation Dice Score  

 

UNet 0.3761 

LSTM - based Stt - UNet 0.4363 

Spatial Transformer incorporated UNet 0.4718 

Temporal Transformer based Stt- UNet 0.4728 
 

Table 7.1: Performance Evaluation on Validation Dice Score 

 

Figure 7.1: Performance Comparison on Validation Dice Score 
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Combination Test Dice Score 

 

UNet 0.3655 

LSTM - based Stt - UNet 0.4413 

Spatial Transformer incorporated UNet 0.4745 

Temporal Transformer based Stt - UNet 0.4781 
 

Table 7.2: Performance Evaluation on Test Dice Score 

 

Figure 7.2: Performance Evaluation on Test Dice Score 

 

The results showed that the transformer incorporated UNet architecture outperformed the 

other architectures in terms of the dice score on our experimentational setup (in terms of 

your training, validation data set, and your choice of the number of channels per layer 

and filter size). This indicates that incorporating the transformer encoding at the 

bottleneck layer improved the model's ability to capture spatial or temporal dependencies 

and resulted in better segmentation results. 

 

To go in detail, when comparing the performance of incorporating a temporal transformer 

versus a spatial transformer, the former was found to have a slight advantage in 

improving overall performance. 
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On the other hand, the LSTM-based stt-unet architecture had a lower validation dice 

score than the transformer incorporated UNet architecture, indicating that the use of 

LSTMs to capture temporal dependencies was not as effective as the transformer 

encoding. 

 

Lastly, the regular UNet architecture yielded the poorest performance in the task of 

segmentation through time, further highlighting the need for models that can effectively 

comprehend sequentiality. 

7.2 Evaluating other metrics  

 
In addition to the validation dice score, the performance of different architectures was 

also evaluated on other metrics. While these metrics serve as valuable indicators, it is 

important to understand that oftentimes, these metrics offer only a partial view and may 

not capture the full complexity and nuances of algorithmic performance. A more 

comprehensive evaluation and comparison is still the Dice Score metric. 
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Combination Tumor 
Vol 

Tumor 
Count Agg 

Small 
Tumor 
Count Agg 

fbeta Best dice 

UNet 2192.97 4.243 1.176 0.3727 0.3761 

 

LSTM based Stt - 
UNet 

2198.277 4.9892 

 

1.08 

 

0.5919 

 

0.4363 

 

Spatial 
Transformer 
incorporated 
UNet 

2202.064 

 

5.78 

 

1.03 

 

0.6107 

 

0.4718 

 

Temporal 
Transformer 
based Stt - UNet 

2246.24 

 

5.914 

 

1.431 

 

0.6472 

 

0.4728 

 
 

Table 7.3: Performance Evaluation on other metrics 
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8. Multi-Layer Recurrence Comparisons 

8.1 Overview 

 
In the previous research on the UNet architecture, it was found that incorporating a 

transformer encoding at the bottleneck layer can lead to improved performance on 

temporal datasets. However, it was also important to investigate whether the performance 

could be further improved by introducing recurrence at not only the bottleneck layer but 

also to other layers as well. 

 

The experiment involved adding transformer encodings to each skip connection layer of 

the UNet architecture and measuring the validation dice score as a metric of performance. 

The results showed that adding transformer encodings at each layer can affect the 

performance significantly for the validation dice score, indicating that the model was 

either better able to or not able to capture complex temporal dependencies in the data. 

 

It is worth noting that this change in performance was subject to computational 

limitations, and it may not be feasible to add recurrence at each layer for all datasets due 

to constraints on computational resources. Nonetheless, these results highlight the 

importance of considering the incorporation of recurrence in the architecture design when 

working with temporal datasets. 

 

Overall, this research suggests that incorporating certain transformer encodings at each 

layer in the UNet architecture can lead to improved performance on temporal datasets, 

and further investigation in this area may yield even better results in the future.  
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8.2 Multi-Layer Encodings with spatial transformer encodings 

 
In order to compare the performances of different architectures, three specific 

architectures were taken into consideration. The first architecture incorporated a spatial 

transformer encoding only at the bottleneck layer of the UNet architecture. In the second 

architecture, the spatial transformer encoding was introduced not only at the bottleneck 

layer but also at the skip connection of the fourth layer. Finally, in the third architecture, 

the spatial transformer encoding was introduced at the skip connections of the third layer, 

fourth layer, and bottleneck layer. These three different architectures were then evaluated 

on the basis of their performance on the given dataset to determine which architecture 

provided the best results. 

 

In this work, a self-attention mechanism to capture the relationships within the final 

features of the left branch is utilized. This self-attention operation is performed 

exclusively on the features within the left branch, just before they undergo the process of 

concatenation. 

 

 

Figure 8.1: Multi-Layer encodings at only bottleneck layer with Spatial Transformer Encodings 
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Figure 8.2: Multi-Layer encodings at 4th layer and bottleneck layer with Spatial Transformer Encodings 

 

 

 

 

 

 

Figure 8.3: Multi-Layer encodings at 3rd layer, 4th layer and bottleneck layer with Spatial Transformer Encodings 

 

8.3 Results for Multi-Layer Encodings with spatial 
transformer encodings 

 
Given the computational and memory limitations that was encountered, we were 

compelled to develop the simplest architecture possible. However, it is worth noting that 

this simplicity actually works in our favor when it comes to integrating spatial 
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transformer encodings at each layer. Surprisingly, despite the straightforwardness of the 

network, the addition of these encodings does not lead to overfitting issues. In fact, it 

allows us to introduce more complexity into the network without compromising its 

overall performance. This outcome provides us with the opportunity to enhance the 

network's capabilities and tackle more intricate tasks while still operating within the 

constraints imposed by computational and memory limitations. 

 

Every spatial transformer encoding in our architecture is comprised of a compact yet 

powerful structure. It encompasses two layers, featuring two heads each, and 

encompasses a feed-forward vector with a dimensionality of 128 and the UNet 

architecture has 16, 32, 64, and 128 features.The results of the study suggest that adding 

spatial transformer encodings on multiple layers can lead to a significant improvement in 

the validation dice scores. 

 

The study found that the third architecture, which had spatial transformer encoding at 

multiple layers, performed the best in terms of validation dice scores.  

Combination Validation Dice Score  

 

Bottleneck 0.3618 

4th Layer + Bottleneck 0.3753 

3rd Layer + 4th Layer + 

Bottleneck 

0.4002 

 
Table 8.1: Multi-Layer Encodings with Spatial Transformer Results 
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Figure 8.4: Multi-Layer Encodings with Spatial Transformer Results 

8.4 Multi-Layer Recurrence with Temporal Transformer 
Encodings 

 
In order to investigate the potential benefits of temporal transformer encodings in the 

context of multi-layered recurrence UNet architectures, four different network 

configurations were compared. The first architecture utilized a temporal transformer 

solely at the bottleneck layer. The second architecture incorporated a temporal 

transformer at both the 4th layer and bottleneck layer. The third network introduced 

temporal encodings at the 3rd layer, 4th layer, and bottleneck layer. The fourth network 

configuration included temporal transformers at the 2nd layer, 3rd layer, 4th layer, and 

bottleneck layer. By comparing the performances of these five different models, the 

impact of multi-layer temporal transformer encodings on the overall performance of the 

network was assessed. 

 

In this work, an attention mechanism not only considers the current time step but also 

takes into account the information from both previous and future time steps within the 
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final features of the left branch. This operation is performed exclusively on the features 

within the left branch, just before they undergo the process of concatenation. 

 

 

Figure 8.5: Multi-Layer Recurrence at only bottleneck layer with Temporal Transformer Encodings 

 

 

 

 

Figure 8.6: Multi-Layer Recurrence at 4th layer and bottleneck layer with Temporal Transformer Encodings 
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Figure 8.7: Multi-Layer Recurrence at 3rd layer, 4th layer and bottleneck layer with Temporal Transformer Encodings 

 

 

 

Figure 8.8: Multi-Layer Recurrence at 2nd layer, 3rd layer, 4th layer and bottleneck layer with Temporal Transformer Encodings 

 

8.5 Results for Multi-Layer Recurrence with Temporal 
Transformer Encodings 

 
Every temporal transformer encoding in our architecture is comprised of a compact yet 

powerful structure. It encompasses four layers, featuring size heads each, and 

encompasses a feed-forward vector with a dimensionality of 512 and the UNet 

architecture has 16, 32, 64, and 128 features. Note that this encoding has different 

complexity than spatial transformer encodings, temporal transformer encodings are more 
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complex than spatial transformer encodings which were presented earlier, and the 

computation and memory allowed a more complex architecture for temporal transformer 

encodings. It is possible that if compared on the same complexity, both spatial and 

temporal transformer encodings may show similar results when added to different layers.  

 

The results of the study suggest that adding recurrence on multiple layers can lead to a 

decrease in the validation dice scores most likely due to overfitting as the network 

becomes more and more complex. The study found that the first architecture, which had 

temporal transformer encoding at bottleneck layer, performed the best in terms of 

validation dice scores.  

 

Overall, these findings highlight the importance of considering the impact of different 

architectural modifications on the performance of the model and the potential benefits of 

incorporating or removing recurrence in the design of deep learning models. 

 

Combination Validation Dice Score  

 

Bottleneck 0.4103 

4th Layer + Bottleneck 0.4098 

3rd Layer + 4th Layer + 

Bottleneck 

0.4083 

2nd Layer + 3rd Layer +  

4th Layer + Bottleneck 

0.3761 
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Table 8.2: Multi-Layer Recurrence Temporal Transformer Results 

 

Figure 8.9: Multi-Layer Recurrence Temporal Transformer Results 
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9. Conclusion 

9.1 Summary of Results 

 
The analysis of segmentation through time poses a unique challenge, as it requires the 

architecture to comprehend the sequentiality of the images to provide an accurate 

segmentation analysis. The study conducted revealed that the regular UNet architecture 

yielded the poorest performance in this task. 

 

To address this issue, an LSTM-based UNet architecture was designed and tested, which 

outperformed the regular UNet architecture when temporal images were utilized for 

segmentation analysis. However, the transformer-based stt-UNet architecture exhibited 

better performance than the LSTM-based stt-UNet architecture. This indicates that 

incorporating a transformer-based model into the architecture design can significantly 

improve the performance of the model. An even detailed work revealed that a temporal 

transformer was a better choice than a spatial transformer when considering temporal 

scans. 

 

Furthermore, it was investigated that introducing recurrence at each layer of the 

architecture design can improve or decrease the performance of the same combination of 

the architecture depending on the transformer introduced or the complexity of the 

architecture. This highlights the importance of incorporating or reducing sequentiality 

and recurrence in the architecture design to achieve better performance in segmentation 

through time analysis. 
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In conclusion, the study emphasizes the need for an architecture that can comprehend 

sequentiality and effectively analyze segmentation through time. The performance 

analysis of various architectures revealed that incorporating a transformer-based model 

can lead to significant improvements in performance. Therefore, incorporating these 

elements in the architecture design can lead to better performance in segmentation 

through time analysis. 

9.2 Future Works 

 
As advancements in medical imaging technologies continue to expand, so too do the 

opportunities for leveraging this data to improve patient outcomes. One potential future 

direction in medical imaging research is to utilize all existing previous MRIs to predict a 

patient's immediate next stage of cancer. This approach could help inform treatment 

decisions and improve patient outcomes by enabling doctors to anticipate the progression 

of the disease and act accordingly. 

 

Another possible avenue of research involves using previous MRIs to predict the next N 

stages of cancer spread. By analyzing a patient's imaging data over time, medical 

professionals could more accurately predict how the disease is likely to progress, 

allowing for more tailored and effective treatment plans to be developed. This approach 

could significantly improve patient prognosis by enabling earlier intervention and 

potentially reducing the risk of metastasis. 
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Furthermore, additional metadata such as drugs taken, and other relevant factors could be 

considered in a prescription-based analysis. This could provide further insights into 

effective treatment options for patients, enabling medical professionals to develop 

personalized treatment plans that are tailored to the specific needs of each patient. 

 

In conclusion, these potential future works have significant implications for the 

diagnosis, treatment, and management of cancer, and warrant further investigation. By 

utilizing medical imaging data and incorporating additional metadata, researchers could 

develop more accurate and effective strategies for combating cancer, ultimately 

improving patient outcomes and quality of life. 
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Appendix 
 
 

1. For regular UNet architecture the following architecture was followed. 
1.1 Kernel Size = (3, 3, 3) 
1.2 Input channels = 1 
1.3 Output channels = 2 
1.4 Strides = (2, 2, 2) 
1.5 Spatial Dims = 3 
1.6 Optimizer used was Adam Optimizer 

 
2. For LSTM stt -  UNet architecture the following architecture was followed. 

2.1 Kernel Size = (3, 3, 3) 
2.2 Input channels = 1 
2.3 Output channels = 2 
2.4 Spatial Dims = 3 
2.5 Optimizer used was Adam Optimizer 

 
3. For Spatial Transformer Encoded UNet architecture the following architecture 

was followed. 
3.1 Kernel Size = (3, 3, 3) 
3.2 Input channels = 1 
3.3 Output channels = 2 
3.4 Spatial Dims = 3 
3.5 Number of heads = 8 
3.6 Number of layers = 6 
3.7 Dim Feed Forward = 512 
3.8 TransformerEncoderLayer had batch_first = False and input to 

TransformerEncoder was [depth * height * width, seq_len, input_channels] 
3.9 Optimizer used was Adam Optimizer 

 
4. For Temporal Transformer Encoded UNet architecture the following architecture 

was followed. 
4.1 Kernel Size = (3, 3, 3) 
4.2 Input channels = 1 
4.3 Output channels = 2 
4.4 Spatial Dims = 3 
4.5 Number of heads = 8 
4.6 Number of layers = 6 
4.7 Dim Feed Forward = 512 
4.8 TransformerEncoderLayer had batch_first = True and input to 

TransformerEncoder was [depth * height * width, seq_len, input_channels] 
4.9 Optimizer used was Adam Optimizer 

 
5. For Multi-Layer Spatial Transformer Encoded UNet architecture the following 

architecture was followed. 
5.1 Kernel Size = (3, 3, 3) 
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5.2 Input channels = 1 
5.3 Output channels = 2 
5.4 Spatial Dims = 3 
5.5 Number of heads = 2 
5.6 Number of layers = 2 
5.7 Dim Feed Forward = 128 
5.8 UNet architecture = (16, 32, 64, 128) 
5.9 Optimizer used was Adam Optimizer 
5.10 TransformerEncoderLayer had batch_first = False and input to 

TransformerEncoder was [depth * height * width, seq_len, input_channels] 
 

6. For Multi-Layer Temporal Transformer Encoded UNet architecture the following 
architecture was followed. 
6.1 Kernel Size = (3, 3, 3) 
6.2 Input channels = 1 
6.3 Output channels = 2 
6.4 Spatial Dims = 3 
6.5 Number of heads = 6 
6.6 Number of layers = 4 
6.7 Dim Feed Forward = 512 
6.8 UNet architecture = (16, 32, 64, 128) 
6.9 Optimizer used was Adam Optimizer 
6.10 TransformerEncoderLayer had batch_first = False and input to 

TransformerEncoder was [depth * height * width, seq_len, input_channels] 
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